GPGPU で実現するバーチャルスクリーニングのための 高速分子形状比較プログラム「FastROCS」

FastROCS: Harnessing the Power of GPU Computing to Speed Up Drug Discovery

佐藤 秀行^a, 勝山 マリコ^a

Hideyuki Sato and Mariko Katsuyama

1. はじめに

創薬研究の初期段階における活性化合物探索方法の一つ に、市販化合物や各製薬企業が所有する化合物ライブラリ などを対象として行われるバーチャルスクリーニング (VS) があります。これは、条件を満たす化合物を大量の化 合物からコンピュータ上で絞り込む方法で、化合物を新た に合成することなく候補化合物の生物学的有用性の確認が 可能なことから、研究の効率化の観点により近年注目され ています。一方,タンパク質は結合する低分子化合物を, 化学構造ではなくその形状 (Shape) と電子的特徴 (Electrostatics)に基づいて識別しています。つまり、これら特徴を 利用した VS は、化学構造が異なりながら同等の活性を有す る化合物を探索する有用な手法として考えられます。そこ で、我々は低分子化合物の形状に着目し、活性既知の低分 子化合物の構造にのみ基づいて、数百万化合物からなる大 規模化合物データベースを対象として VS を実施する分子 形状比較プログラム ROCS¹を開発しました。ROCS は、こ れまでに多くの創薬研究者によりその有用性が実証されて おり、タンパク質の活性部位と化合物間の相互作用に基づ いて行われる VS (ドッキング) よりも優れているとの報 告²もあります。本稿では, ROCS を GPGPU (General-Purpose computing on Graphics Processing Units) に対応させる ことで、計算速度を数百~1,000倍と飛躍的に高速化し、 1秒間に200万配座の計算処理を実現した高速分子形状比較 プログラム FastROCS を紹介します。

2. GPGPU による高速並列計算

GPGPUは、通常はグラフィックス表示に使用される400 個以上のコアを配置したボードにより並列計算を実現する 高速計算技術です。ワークステーション1台当たり1テラ フロップス以上の計算能力を追加することができ、高速計

^aオープンアイ・ジャパン株式会社

連絡先 〒105-0003 東京都港区西新橋 1-6-12 アイオス虎ノ門 904 URL http://www.eyesopen.com/ 電子メール oe_japan@eyesopen.com

©Japan Society for Molecular Science

算技術が必要とされる分野では急速に実用化が進められて います。特に、ワークステーションクラスの筐体に4枚の GPGPU用のボードを設置することができることから、大規 模なサーバールームを用意せずに高速並列計算を実現する ことが可能となり、今後益々注目される技術であると考え られます。

一方、CPU(Central Processing Unit)用プログラムは一般 的には C/C++ などの言語で作成されていますが、GPGPUで 動作させるためには OpenCL などの専用言語で書きなおす 必要があります。そのため、この様に高速化計算に有用な 技術であっても、現時点ですべてのプログラムが GPGPU に 移植されているわけではありません。本稿で紹介する FastROCS は、CPUで動作する ROCS を GPGPU 仕様とする ために、OpenCL、C++、Python を組み合わせ新たに作成し たプログラムです。

3. FastROCS

ROCS は化合物の形状(Shape)と,構造に含まれる化学 的特徴を球で定義したもの(Color)を組み合わせ(Figure 1),3次元空間上で Shape と Color に基づいて2分子の重 なりを最適化し,Shape と Color の重なりに対して2分子の 類似性を計算します。ROCS では,Shape と Color をそれぞ れガウシアン関数で定義することで,高速かつ高精度の計 算を実現しています。

Figure 1. An example of shape (gray) and color (ball) form query.

検索対象となるデータベースに含まれる化合物の配座 (三次元構造)は、予め OMEGA³等の配座生成専用プログ ラムで計算しておきます。ROCS は、最初にクエリー(活

Figure 2. ROCS alignments for query and database molecule.

性既知の低分子化合物)とデータベース化合物の重心を重 ね合わせた後に、データベース化合物の配座を固定したま ま回転と並進のみで重ね合わせを最適化します(Figure 2)。 次に、クエリーとデータベース化合物に対し Shape と Color それぞれの Tanimoto 類似係数によるスコア値(Tanimoto-Combo)を算出することによって、クエリーと類似性の高 い化合物をデータベースから絞り込みます。ROCS は、1 CPU 当たり 1 秒間に 20 から 40 化合物を処理することがで き、さらに計算をクラスター上に並列化することで、大規 模データベースを対象としたバーチャルスクリーニングを 実用的な時間内で実現します。

FastROCS は、劇的な高速化を実現するために、これまで の CPU 上での計算を単に GPGPU に移植するだけではなく、 データベースを GPGPU サーバーのメモリ (RAM) 上にす べて読み込む等の基本的な仕様から見直しています。 FastROCS では、クエリーとデータベース化合物の重ね合わ せを行う過程のうち、重心を重ねるまでの部分を CPU で行 い、後半の最適化部分のみを GPGPU で行っています。ま た、クエリーとデータベース化合物の類似性計算は、Shape の類似性 (ShapeTanimoto) を GPGPU で行い、CPU で両者の和を TanimotoCombo として算出します。

さらに FastROCS は、その高速計算性能を創薬研究現場 で最大限に活用出来る様に、クライアント-サーバー型で の運用とし、ネットワーク上の端末から数百万化合物の データベースに対して計算を実行し、1 分以内に結果を得 ることができます。そのため、例えば OpenEye 社製グラ フィックス・プログラム VIDA を利用すれば、クエリー分 子の入力から結果の表示までの一連の操作を容易に実施す ることが可能です。

4. 計算速度

PubChem⁴から化合物データベースを入手し,薬として の有用性の低い化合物を FILTER プログラムにより削除後 約 1000 万化合物のデータベースを作成し, 配座解析プログ ラム OMEGA により各化合物あたり 5 配座程度を発生させ てデータベースを作成しました。このデータベースを NVIDIA 社製 Tesla カードを 4 枚搭載した FastROCS サー バーの RAM 上に読み込み, VIDA をクライアントとして, RSCB PDB に登録されている 3POG⁵のリガンド構造をクエ リーとして, FastROCS 計算を実行しました。その結果, ROCS では数時間程度必要であった計算が FastROCS では約 25 秒で完了し, クエリーとは化学構造が異なりながら立体 的な重なりの良い化合物を見出すことができました (Figure 3)。

Figure 3. An illustration showing a hit database molecule (gray) overlaid on query (white).

5. まとめ

FastROCS は、活性化合物の構造にのみ基づく VS を、 GPGPU により非常に高速で実現する新しいプログラムです。 数千万化合物のデータベースを対象とした場合、ROCS で は数時間から一晩程度の計算時間が必要であったのに対し、 1 分以内での計算を可能にしました。この計算速度の劇的な 向上は、単に計算時間が短縮されただけではなく、従来の 2 次元構造の類似性に基づく検索と同程度の時間で 3 次元構 造に基づく類似性検索を可能とすることから、創薬研究に おけるパラダイムシフトつまり薬物設計に変革をもたらす ことが可能であると期待されます。

引用文献

- Grant, J. A.; Gallardo, M. A.; Pickup, B. J. Comp. Chem. 1996, 17, 1653–1666.
- (2) Sheridan, R. P.; McGaughey, G.; Cornell, W. J. Comput. Aided Mol. Des. 2008, 22, 257–265.
- (3) Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. J. Chem. Inf. Model. 2010, 50, 572–584.
- (4) http://pubchem.ncbi.nlm.nih.go/
- (5) Rasmussen, S. G.; Choi, H. J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; Devree, B. T.; Rosenbaum, D. M.; Thian, F. S.; Kobilka, T. S.; Schnapp, A.; Konetzki, I.; Sunahara, R. K.; Gellman, S. H.; Pautsch, A.; Steyaert, J.; Weis, W. I.; Kobilka, B. K. *Nature* **2011**, *469*, 175–180.

(受理日 2012年4月3日)